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SCCUNIYY CLASICATW OF THIS PA m go*Rafts@*

'separation. A viscous-inviscid interaction calculation procedure was developed
to predict airfoil flows containing leading edge or midchord separation bubbles.
The procedure utilized the inverse finite-difference method to predict the
viscous flow and a small disturbance rauchy integral formulation for the invis-
cid flow. Three models for laminar-turbulent transition were evaluated. Gen-
erally good agreement between predictions of the best model and measurements was
observed in the several comparisons made. Some early results from a finite-
difference scheme to solve the partially parabolized Navier-Stokes equations
in primitive variables were also reported. The method was developed to predict
viscous flows in which normal pressure gradients cannot be neglected. .ood
agreement between the predictions and numerical solutions to the full favier-
Stokes equations fog developing laminar channel flow at Reynolds numberi, as
low as 10 and a nearly separating laminar external flow at a Reynolds number
of approximately 104 was noted.
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NOMENCLATURE

A function of Mach number (see Eq. 3.8)
b0 9 b constants

C constant

c airfoil chord

C pressure coefficient, i - (u e/u.) 2

M Mach number

p pressure

q intensity of line source or sink

R reattachment point

Re Reynolds number based on xx

Re Reynolds number based on momentum thickness

S separation point

s distance along upper surface of airfoil measured from stagnation
point

s' distance along surface measured from leading edge

Tu "r-estream turbulence level, 100[(u'2 + v'2 + w'2 )/31 /2/u

u x component of velocity

v y component of velocity

x coordinate along the surface

x* dimensionless distance, bIx/b0

x1 variable of integration in Eq. 3.3

xI  interaction starting point

x 2  interaction end point

Ax length of transition region

I F y coordinate normal to surface

12



xii

Ye distance to outer boundary

y intermittency function

6 boundary layer thickness

6* displacement thickness, f (1 - U/Ue)dye
0

X extent of transition region

11 viscosity

V kinematic viscosity

normalized streamwise coordinate in transition zone, (x - xtr)/

P density

T shearing stress

Subscripts

BL denotes boundary layer

c indicates value of correction

e evaluated at outer flow boundary

ft evaluated for fully turbulent flow

INV denotes inviscid flow

L evaluated at downstream flow boundary

n denotes iteration level

o denotes reference quantity

s denotes evaluation at separation point

t denotes turbulent flow quantity or transition end point

tr denotes transition initiation point

denotes evaluation at freestream conditions far upstream of
airfoil
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1. INTRODUCTION

The prediction and control of turbulent flow separation and reattach-

ment continue to be important in many engineering applications. Subsonic

flow separation occurs or can occur in many important engineering devices

such as airfoils, helicopter blades, near the tail of axisymmetric bodies,

ship hulls, and in diffusers, compressors, and engine inlets. In many

applications it is desirable to avoid separation entirely. In others,

some separated regions must be tolerated over some range of the operating

conditions; and it is highly desirable to be able to predict performance

even with regions of recirculation present. Although progress is being

made in the understanding and prediction of these flows, the accurate and

economical calculation of turbulent flows containing regions of recircula-

tion still remains one of the major challenges in the field of computa-

tional fluid dynamics.

Most recent investigators dealing with separated flows have been

optimistic that the boundary layer equations may provide a suitable

mathematical description for at least thin separated regions at moderate

or high Reynolds numbers. However, care must be taken in the solution

of boundary layer equations for separated flows. Conventional "direct"

solution procedures for attached flows specify the pressure gradient as

part of the outer boundary condition. This solution procedure becomes

singular at separation. Goldstein first brought attention to this

singularity in 1948 [1]. The manner in which this singularity appears

in finite-difference solutions was illustrated by Pletcher and Dancey

[2]. In recent calculations with boundary layer equations, the

J 21
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singularity has been avoided for subsonic flows by employing an "inverse"

procedure whereby the displacement thickness or wall shear stress is

specified in lieu of the pressure gradient [3,4,5], or by providing an

interaction equation (usually coupled with a solution for the inviscid

outer flow) by which the pressure gradient can adjust simultaneously

with the solution [2,6,7].

Apart from the separation point singularity, the flow reversal

prevents the once-through solution of the difference equations without

special attention being given to the evaluation of the convective terms

in the momentum equation. The approximate treatment of the streamwise

derivative suggested by Reyhner and Fligge-Lotz [8] has enabled several

investigators [2,4,51 to compute through regions of recirculation in

a single pass.

Several investigators [9,10,11,12] have employed a more exact

evaluation of the troublesome convective terms for the recirculating

region in laminar flows by making multiple computational sweeps of the

flow field in an iterative fashion. However, to date, the evidence

tends to suggest that the Reyhner-Flugge-Lotz (FLARE) approximation is

a fairly good one when the maximum reversed flow velocities are less

than about 10% of the velocity in the outer stream [10], a range that

includes many, if not most, separated flows of interest in aerodynamic

applications. The use of this approximation can result in significant

computational savings.

|I. The solution of boundary layer equations alone provides only part

of the answer to the problem posed by separation in applications because

'1'I
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information from or at least compatible with the outer inviscid flow

is needed to establish the outer boundary conditions for this boundary

layer calculation. In the neighborhood of separation, the inviscid

flow solution over the displacement surface of the viscous flow signifi-

cantly differs from the inviscid flow over the solid body alone. Neither

the correct inviscid solution nor the correct viscous flow solution can

be obtained independently. The two problems must be solved simultane-

ously or iteratively until the solutions "match" through a common stream-

wise pressure gradient at the solid surface. Thus, a practical calcula-

tion scheme based on boundary layer equations must include provisions

for the viscous-inviscid interaction.

There have been relatively few reports of viscous-inviscid inter-

action schemes applied to subsonic separated turbulent flow. Interaction

methods based on an integral procedure for the viscous flow have been

applied to fully-stalled turbulent flow in diffusers [13] and to the

flow over a rearward-facing step in an internal flow [14]. Crimi and

Reeves [15] also used an integral analysis in developing a prediction

scheme for leading edge separation bubbles. Gerhart and Chima [16]

Nreported that an attempt to apply an integral boundary layer scheme

in an interaction procedure for treating subsonic turbulent separation

had, to date, been unsuccessful. Differential solutions to the boundary

layer equations were used in the interaction schemes applied to subsonic

4turbulent flow by Briley and McDonald [17], Carter [18], and Kwon and

Pletcher [19]. The Briley and McDonald study utilized a time-dependent

analysis, whereas both Carter and Kwon and Pletcher employed inverse
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boundary layer procedures. Carter [18] computed the separated flow on an

axisymmetric body-sting juncture, whereas the other two studies [17,19]

treated transitional midchord separation bubbles. Only [17] and [19]

included comparisons with experimental data.

Considerable uncertainty still exists in predicting separated

turbulent flows. For many years, boundary layer equations were thought

to be an unsuitable vehicle for analysis of separated flows either

because of questions concerning the order of magnitude in terms ne-

glected or because of the apparent impossibility of obtaining solutions

because of a number of difficulties, including the separation point

singularity. This latter impediment has now been eased, but a question

remains about the accuracy limits of the boundary layer approximation

for separated flows. The question is clouded somewhat by equal if not

greater uncertainty about appropriate turbulence models for these flows.

This report describes the results of a research program to develop

and evaluate improved methods of predicting turbulent boundary layer

flows in the neighborhood of separation, including the region of recir-

culation downstream of separation. Three distinct phases of this study

can be identified:

1. Development and application of an inverse boundary layer

finite-difference scheme to evaluate suitable turbulence

models for external flows with regions of flow reversal.

2. Development of a viscous-inviscid interaction prediction

method for separating flows.

L
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3. Development of a calculation scheme which includes pressure

variations in the normal direction.

The results of these studies will be summarized in the following sections.

N

S.



2. PREDICTION OF TURBULENT SEPARATING FLOW

An inverse finite-difference boundary layer prediction scheme was

developed to permit the calculation of turbulent flows beyond separation.

Conventional finite-difference schemes specify the pressure gradient

(or alternatively, u e) as an outer boundary condition. This conventional

procedure is often referred to as a "direct" method. The direct proce-

dure gives a solution which is known to be singular at the separation

point as demonstrated by Pletcher and Dancey [2] and others. In an

"inverse" procedure, some other condition on the solution, such as

the displacement thickness, wall shear stress or the normal component

of velocity at the outer edge, is specified instead of the pressure

gradient. As long as specification of the pressure gradient is avoided,

the solution procedure appears to be non-singular at the separation

point. The essential features of the inverse method for separated

flows employed in the present research and reported in detail in [31

will be summarized below.

2.1. Analysis

The flow is assumed to be two-dimensional, steady, and incompressi-

ble. Any separated regions are assumed to be sufficiently thin so that

the boundary layer form of the momentum and continuity equations provides

a good but approximate model for the forward-going flow. In any region

of reversed flow, the streamwise convective derivative is also assumed

to be negligibly small. Neglecting turbulent normal stresses, the

governing conservation equations are:

I2
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Continuity

Du + v 0 (2.1)
ax y

Moment um

C j +v1 +dX D (2.2)

where C = 1.0 when u > 0, and C - a small (< 0.2) positive constant

when u < 0 and

L Du -- pv u (2.3)

The inner boundary conditions are

u(x,O) = v(x,0) = 0 (2.4)

For attached flows some distance from the separation point, the

standard direct finite-difference method was employed for which the

outer boundary condition was

lim u(x,y) = Ue(x) (2.5)

Y4K

For the inverse method, the second boundary condition satisfied by

the streamwise component of velocity was

f 1 - u )dy 6*(x) (2.6)

I.
where 6*(x) is a prescribed function.

MOM
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Equation (2.2) deviates from the conventional momentum equation in

the treatment (FLARE approximation, [8]) of the streamwise derivative

term, C The form used permits marching the solution through re-

gions of reversed flow by avoiding a negative coefficient for the

streamwise derivative term. As indicated in the Introduction, evidence

accumulated by several investigations indicates that this approximation

is a valid one for flows in which the reversed flow velocities are

small. This point is discussed further in [3].

2.2. Turbulence Modeling

The objective of this phase of the study was to identify the

simplest turbulence model that would provide reasonable predictions

of mean flow quantities in regions where separation had occurred.

The strategy was first to evaluate the predictions of the simpler

algebraic turbulence models and determine, where possible, the primary

cause for any poor performance detected in terms of model parameters,

and then to "correct" the problem by moving to a more complex model

capable of providing a satisfactory distribution for the model parameter

most obviously at fault. Five models were evaluated in [3] by comparing

predictions with the measurements of Simpson et al. [20] and Chu and

Young (21], which included data beyond the separation point. Figure 1

shows a representative velocity profile comparison well into the sepa-

rated region of the measurements reported by Simpson et al. [20]. The

models referred to in the figure can be briefly described as follows:

if
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" Model A. Simple mixing-length model used as baseline (Model 2
of [22]).

" Model B. Cebeci-Smith model (Model 1 of [22]).

" Model C. A turbulence kinetic energy model (similar to the

Prandtl energy model).

" Model D. Model A supplemented with the newly developed length
scale transport equation.

" Model E. Model D augmented by the use of a solution to the
turbulent kinetic energy equation.

Models D and E originated during the present study. A comparison

of the predictions of Model A and D illustrates the level of improvement

which can be attributed to the use of the new length scale transport

equation. Details of all of these models, as well as a description of

the finite-difference solution method, can be found in [3].

2.3. Summary of Results

Several comparisons of predictions with the experimental measure-

ments of [20] and [211 are given in [3], both for flows approaching

separation and for those containing recirculating regions.

Relatively standard algebraic turbulence models, Models A and B,

were found to perform poorly in predicting flow parameters beyond

separation. The predictions were markedly improved by the modification

of the characteristic length scale used in the turbulence modeling

(Model D) for the outer part of the flow. A simplified transport

equation for this length scale was proposed. Including turbulence

kinetic energy in the turbulence model following the Prandtl-Kolmogorov

formulation had little effect on the predictions (Models C and E).
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Length scale, rather than turbulence velocity scale, seems to be the

parameter which deviates most significantly from equilibrium values in

incompressible separating flows, at least as determined by the turbulence

models considered in the present study.

i.
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3. PREDICTION OF SEPARATED BOUNDARY LAYERS
INCLUDING VISCOUS-INVISCID INTERACTION

The presence of flow separation sufficiently alters the inviscid

flow over a surface such that neither the viscous nor the inviscid

portions of the flow can be computed correctly in an independent manner.

Instead, interaction between the viscous and inviscid portions of the

flow must be taken into account.

A viscous-inviscid calculation procedure has been developed

utilizing the inverse boundary layer finite-difference procedure

summarized in the previous section (details are provided in [3]) with

a small disturbance Cauchy integral formulation for the inviscid flow.

The key features of the inviscid flow calculation and the means of

achieving a convergent iterative procedure will be summarized below.

More details can be found in [19] and [231.

3.1. Viscous-Inviscid Interaction Analysis

The analysis is applicable for flows containing thin separation

bubbles on solid surfaces. It is assumed that the steady boundary

layer equations are an adequate mathematical model for the viscous

flow and that potential flow theory is adequate for the inviscid flow

outside the boundary layer if the displacement effect of the separated

region is taken into account. This displacement effect is assumed to

be confined to the local neighborhood of the separated flow which will

be referred to as the interaction region (see Fig. 2). The concept of

o * a local interaction region has also been used by Jobe [24], Carter and

/1
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Wornom [4], and others. Within the interaction region the potential

flow solution over the displacement surface of the viscous flow signifi-

cantly differs from the inviscid flow over the solid body alone. Out-

side the interaction region, conventional boundary layer and potential

flow analyses are assumed to be adequate.

The governing equations for the viscous portion of the flow are

given by Eqs. (2.1) through (2.6). It is assumed that the inviscid

flow is two-dimensional and irrotational, permitting the use of super-

position to develop the potential flow solution. Letting u denotee,o

the tangential component of velocity of the inviscid flow over the solid

body without separation and u be the velocity on the displacement sur-

face induced only by the sources and sinks distributed on the surface

of the body due to the displacement effect of the viscous flow in the

interaction region, the x-component of velocity of a fluid particle

on the displacement surface can be written as

u = u + u (3.1)
e e,o c

Following Lighthill [25], the intensity of the line source or sink

displacing a streamline at the displacement surface of the viscous

flow can be evaluated as

d(Ue5*)

q = dx (3.2)I.
Using a small disturbance approximation valid for small values of 6*,

u (x) can be evaluated asC

'I
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1 f d(U6*) dx'u (x) = 7T f d x'T T. -x' (3.3)

More details of this development can be found in (23].

Further details on the calculation of u (the inviscid surfacee~o

velocity on the body without separation) will not be given here. ue, °

can be obtained by conventional methods, for example, by the Hess and

Smith [26] procedure or from experimental data. This distribution does

not change during the interaction calculation.

The procedure used to match the viscous and inviscid flow solutions

in the present study differs somewhat from what is usually considered

the "conventional" procedure for flows in which the boundary layer equa-

tions cannot be solved by a direct procedure. In the conventional

procedure, both the boundary layer and inviscid flows are solved

inversely, as in the work reported by Jobe [24) and Carter and Wornom

[4]. This conventional method typically requires under-relaxation and

a large number of iterations.

In the method developed in the present study, as well as in the

method used by Carter in [18], the inviscid solution proceeds in the

direct mode utilizing the boundary layer edge velocity and 6* as an

input and providing a new edge velocity as an output. The difference

between the edge velocities calculated both ways (from the inviscid

and boundary layer procedure) is used as a potential to calculate an

improved 6* distribution. To do this formally, one would seek to

determine the way in which a change in edge velocity would influence

6*. Reasonable success has been achieved by noting that, for low-speed

I

I, .. ,_1
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boundary layer flows, a response to small excursions in local edge

velocity tends to preserve the volume flow rate per unit width in the

boundary layer, u e6* constant. This implies that a local decrease in

u (x) (associated with a more adverse pressure gradient) causes an
e

increase in 6*(x), and a local increase in u eXW (associated with a

more favorable pressure gradient) causes a decrease in 6*(x). This

trend would appear to agree with experience. The concept is put into

practice as follows. Having passed through the boundary layer calcu-

lation using 6n(x) to obtain ueBL and using uBL and 6* in the

inviscid calculation to obtain u eIV the new input to the boundary

layer calculation is computed by

6* = *( U-eBLn (34

n+l n ue, INVn/

It is important to note the Eq. (3.4) only serves as a basis for

correcting 6* between iterative passes, so no formal justification is

required as long as the iterative procedure converges. At convergence,

UeBL = ue,INV and Eq. (3.4) represents an identity, thereby having no

effect on the nature of the final solution. One of the main advantages

of this method is that the need to use "smoothing" or under-relaxation

can be avoided; in fact, successive over-relaxation (SOR) can be used.

Typically, 1 to 15 iterative passes through the viscous and inviscid

procedures where required for convergence of the interaction calcula-

tion.

,if
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3.2. Turbulence and Transition Modeling

External flows which give rise to thin separation bubbles invariably

separate in the laminar state and undergo transition to turbulent flow

prior to or coincident with reattachment. Unfortunately there are no

known practical procedures for computing the details of laminar-turbulent

transition from first principles. An in-depth study of transition has

not been included in the present research effort. Instead, the primary

objective has been to establish the feasibility of using the present

viscous-inviscid interaction approach for transitional bubbles. To do

this, the fully turbulent viscosity p ft' as given by Model D of [3],

was multiplied by an empirical intermittency function y, such that

Pt = Wfty  (3.5)

Such an approach has proven useful for natural transition on flat sur-

faces and airfoils [27]. Three schemes for evaluating y have been

applied in the present study.

3.2.1. Transition Model A

The model is described in [19] and is based on existing correla-

tions for natural transition on flat plates and airfoils. Transition

was assumed to start when Ree equaled or exceeded the value given by

Cebeci [271.

Re = 1.174 + 22400 0.46 (3.6)
0,tr [ Reiex

for

I
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0.1 X 106 < Re < 40 x 106

For the calculation of the extent of the transition region, the

correlation suggested by Chen and Thyson [28] was used:

Re = A Re 067 (3.7)Ax,tr x,tr

where A is the function of Mach number expressed by

A = 60 + 4.68M 1 .92  (3.8)

e

Thus, the extent of the transition region is

A xtr
Ax = x -x (3.9)

t tr Re 0.33
X,tr

The intermittency function was evaluated using tle correlation

presented by Dhawan and Narashima (29]. The correlation was obtained

based on the source density function of Emons [30], such as in the

streamwise direction

y - 1 - exp(-0.412 2) (3.10)

where

0 x tr (3.11)

for x tr< x < xt and A is a measure of the extent of the transition

region determined in the present study by letting y - 0.999, and

r
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x = xt in Eqs. (3.10) and (3.11). Two potential weaknesses in this

model should be pointed out. The transition starting point is computed

in a manner which is independent of the location of separation. Poor

agreement with measurements might be anticipated if the predicted point

for the onset of turbulence does not coincide closely with, and slightly

past, the separation point. The second possible problem with this model

is the relatively long extent of transition that is predicted. For

some bubbles, at least, experimenters report that transition appears

to occur nearly instantaneously near the reattachment point.

3.2.2. Transition Model B

The pressure distribution from the separation point to the point

where the displacement thickness reaches a maximum is characteristically

nearly uniform [31,32]. Transition has frequently been associated with

this point of maximum 6* where the flow "turns down" to reattachment,

and experiments tend to confirm that transition is well advanced or

completed when reattachment occurs. This point, which marks the end

of the constant pressure region in transitional bubbles from several

experiments, has been correlated 1191 against the Reynolds number at

separation. In Transition Model B, transition was assumed to start at

the point where constant pressure region ends, which is reasonably well

correlated by

Re ffi 1.0607Re + 33185 (3.12)x,tr x,s

where Re is based on the distance from the airfoil stagnation point.

Having established the point where transition is initiated by Eq. (3.12),

the intermittency function is evaluated by the form suggested by Crimi

* •and Reeves [4]:
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Y 0, x < Xtr

1- exp[-CT(x- xtr)2], x > Xtr (3.13)

where

CT = 0.025/6*2

3.2.3. Transition Model C

This model assumes that transition occurs instantaneously at the

point indicated by Eq. (3.12). Although the model gave surprisingly

good results, it was ultimately rejected on physical grounds in that

the transition zone was expected to occupy a finite, though possibly

very short, region.

3.3. Summary of Results

Table 1 lists the seven separation bubble cases which have been

computed to date by the viscous-inviscid interaction method described

in this report. Results from the first three cases have been reported

elsewhere [19,23]. More recent results will be described in this

report.

The study in [19] compared predictions for a laminar test case

with the results calculated by Carter and Wornom [4]. The agreement

was seen to be quite good. Both Transition Models A and B were used

in [19] to predict a midchord transitional separation bubble studied

experimentally by Gault [33]. Predictions generally agreed well with

the measurements and with the predictions obtained with a different

i 21
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numerical scheme by Briley and McDonald [17]. There was no clear

basis demonstrated in [19] for preferring the predictions of one

transition model over the other.

In computing Case 4 of Table 1, a midchord bubble on the NACA

66 3-018 airfoil at a 20 angle of attack, Transition Model A predicted

the onset of transition prior to the experimentally observed separa-

tion point and the predicted flow did not separate at all. Transition

Model A utilized elements developed for natural transition with very

small pressure gradients and was evaluated in order to establish a

baseline comparison through which the differences between bubble and

natural transition might become evident. Apparently the model pre-

dicts an early (compared to experimental results) onset of transition

in some cases, which can permit the transitional-turbulent flow to

overcome the locally adverse pressure gradient and remain attached,

counter to the experimental measurements. Transition Model A was not

used further for Cases 4 through 7 in Table 1.

Figures 3, 4, 5, and 6 compare the predicted and measured pressure

coefficients for Cases 4-7 in Table 1. The predictions of Crimi and

Reeves [151 obtained by an interaction scheme which calculated the

viscous flow by an integral method are also shown in Fig. 6. The pre-

dicted separation and reattachment points are indicated on the figures.

The agreement between the predicted and the measured pressure coefficient

appears to be generally good.

Predicted velocity profiles near and in the separated regions are

compared with measurements for Cases 4-7 in Figs. 7-10. The agreement
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SPECIFIED INVISCID VELOCITY
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Fig. 3. Comparison ot predicted pressure distribution with the experimental
data on NACA 66 3-018 airfoil, t = 20.
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Fig. 4. Comparison of predicted pressure distribution with experimental
data on NACA 63-009 airfoil, a =4.

i.

12



26

PRESENT PREDICTION (TRANSITION MODEL B)

--- SPECIFIED INVISCID VELOCITY

o MEASURED BY GAULT [35]

e (NACA 63-009, Rec = 5.8 x 10 5)

0 0
.0

2.0

1.0 I I I I

0.010 0.015 0.020 0.025 0.030 0.035 0.040

s/c

Fig. 5. Comparison of predicted pressure distribution with experimental
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PRESENT PREDICTION (TRANSITION MODEL B)
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Fig. b. Comparison of predicted pressure distribution with oxperimental
data on NACA 63-009 airfoil, C 7.
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between predictions and measurements appears reasonable, except,

perhaps, for Case 7, the NACA 63-009 airfoil at a = 70. The diffi-

culty of obtaining accurate velocity measurements with conventional

pressure probes in and near separated flows is well known [20]. Pre-

dicted velocity profiles near reattachment are extremely sensitive

to the location of the predicted transition point. For Case 7,

especially, the predicted transition occurred slightly downstream

of that indicated by the experimental measurements. Here, the steepen-

ing of the velocity profiles is taken as evidence of transition from

laminar to turbulent flow. Generally, the velocity profiles suggest

that the flow separates laminarly and remains essentially laminar

until after the local peak in the displacement surface has occurred,

indicating that the outer portion of the flow is turning toward the

airfoil and that the reversed flow region is shrinking. In one

computed case, Case 6, the predicted flow reattached laminarly,

separated a second time, underwent transition to turbulent flow, and

then reattached a second time. Such behavior is indicated in Fig. 11.

Measurements of skin friction are not available for comparison. Despite

this unusual predicted flow pattern, the predicted pressure coefficients

and velocity profiles are in fairly good agreement with the measurements.

It should be remembered that the actual flow near separation and reattach-

ment points is frequently quite complex, with certain portions of the

flow fluctuating in time between the separated and attached state [201.

The predictions for Cases 5-7 were for the NACA 63-009 airfoil at

increasing angles of attack. The predicted displacement surfaces and

h
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Fig. 9. Comparison of predicted mean velocity profiles with experimental
data on NACA 63-009 airfoil, a 50.
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separation and reattachment points for these three cases are shown in

Fig. 12. The separation bubble can be seen to move toward the leading

edge as the angle of attack increased. This same trend can be observed

in the experimental measurements (for example, from the experimental

velocity profile of Figs. 4-6), although no displacement thickness was

measured to allow a comparison in Fig. 12.

The inviscid velocity distribution for the unseparated flow,

needed in the present viscous-inviscid interaction procedure, was

obtained by the Hess and Smith [26] procedure for Cases 4-7. From 10

to 15 iterations through the viscous and inviscid calculations were

needed for convergence, as determined by the requirement that the

maximum change in the inviscid edge velocity be less than 0.6% between

two successive iterations. The maximum difference between ueBL and

u was less than 2%. Computational details for Cases 1-3 can be
e, INV
found in [19] and [23].

".

if
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4. A SCHEME FOR SOLVING THE PARTIALLY PARABOLIZED
NAVIER-STOKES EQUATIONS IN TWO-DIMENSIONAL FLOW

It is desirable in the analysis of any flow problem to determine

the simplest mathematical model which will permit a useful prediction.

The Navier-Stokes equations stand as the ultimate mathematical model,

but the solution of these equations, even by numerical means, is still

sufficiently difficult so that interest remains high in identifying

simpler mathematical descriptions. Prandtl's boundary layer equations

serve as an example of a reduced mathematical model which has proven

very useful over the past 75 years. The full range of applicability

of the thin shear layer approximation was not evident initially and is even

today still being tested. However, there are many common intermediate

Reynolds number flows that cannot be adequately represented by Prandtl's

boundary layer equations even though they possess a primary flow direc-

tion and are without regions of recirculation. The assumptions that

upstream influences are negligible and that transverse pressure gradients

are small (which are incorporated in the boundary layer equations) tend

to mask several important features of these flows.

The boundary layer small-disturbance inviscid interaction calcula-

tion method discussed previously appears to be accurate enough for many

applications and allows one type of complex flow to be predicted, which

could not be treated by conventional boundary layer equations alone.

In some applications it is questionable whether the pressure variations

in the normal direction through the viscous layer can be ignored. Such

flows include separated regions at low Reynolds numbers, flow on highly

ratMB Ph NN ]ru m -_.....
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curved surfaces and in the neighborhood of abrupt changes in geometry

(steps, boat-tails). Higher order calculation schemes that can more

accurately account for pressure variations may be needed for accurate

prediction of such flows and would enable benchmark comparisons to be

made to assess the accuracy of more approximate schemes.

Under motivation as indicated above, work has been initiated to

develop a solution procedure for the partially parabolized Navier-Stokes

equations. The overall strategy has been to develop a procedure that

easily starts with the first pass providing a prediction for zero

normal pressure gradients so that for many flows only small changes

would be required in successive sweeps. A second requirement has been

to use procedures that would readily extend to the full Navier-Stokes

equations in those special cases where this would be required.

4.1. Analysis

For a flow predominantly in the x-direction, the partially

parabolized equations being solved for a steady, laminar incompressi-

ble two-dimensional flow are:

X-momentum

u Lu+ -+ V 2u (4.1)
ax +' v ax ay2
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y- m om en tu m3

u _xx + v a =  V (4.2)

Continuity

u + v
x + v 0 (4.3)

The terms eliminated from the steady Navier-Stokes equations are

(M2 u)/(x2) from Eq. (4.1) and (v2 v)(Yy2 ) from Eq. (4.2). These

terms can be shown (at least formally) to be at least an order of

magnitude smaller than those retained for laminar flows in which a

predominant flow direction exists. The elimination of these terms

removes one source of elliptic behavior from the equations, although

the system still is elliptic because of the pressure variation in

two directions. In this system, all upstream influences are propagated

through the pressure field. To date it has not been possible to make

comparisons to determine the computational effort saved by eliminating

these two terms from the Navier-Stokes equations. Conceptually, one

iteration level has been removed from the system of equations as they

have been solved by most schemes. It is probable that the computational

effort required is on the order of one-half that required for the full

Navier-Stokes equations, perhaps less, and two-dimensional storage is

I. only required for p, rather than for u, v, and p.

The solution procedure will only be outlined briefly here.

Further details can be found in [37] and [38]. The procedure utilizes

JT 21
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several concepts from methods already described in the literature, but

contains some novel features, especially in the treatment of pressure.

The primitive variables of u, v, and p are used with a staggered grid.

The only other computational scheme utilizing primitive variables noted

to date for solving the partially parabolized system is that of Pratap

and Spalding [391.

For a specified pressure field, the system of equations is para-

bolic, and a solution can be marched in the main flow direction. This

solution will not locally satisfy the continuity equation unless the

pressure distribution is the "correct" one.

The procedure followed was:

1. An initial guess of ap/9y = 0 was made, and the corresponding

ap/Dx was determined for the first computational sweep either

to conserve mass on an overall basis (used for the channel

calculations in [37]) or according to the boundary layer

approximation, dp/dx = -p u du /dx (used for results presentede e

in this report). Starting velocity distributions are specified

at the upstream boundary.

2. The u and v components of velocity were calculated at each

marching station by a solution of Eq. (4.1) and Eq. (4.2),

using the best known values for the pressure.

3. This solution did not, in general, satisfy continuity locally

because the pressure field was not the correct one. A correc-

. tive flow was found at each marching station by assuming that

this corrective flow was irrotational, driven by a velocity
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potential as necessary to satisfy the continuity equation

[40,411. The required potential was determined by a single

pass of a tridiagonal elimination scheme at each streamwise

station. The velocities were then updated by the addition

of the corrective flow.

4. In order to move toward the creation of a pressure field

that will drive velocities that satisfy continuity locally,

a Poisson equation for the pressure was formed from the

complete momentum equations using the corrected velocities.

The pressure was thereby updated at each streamwise station

by relaxing the Poisson equation. It was found useful to

store the source term for further global iterations after

each streamwise pass.

5. The solution was then advanced to the next streamwise station

and Steps 2-4 carried out for each streamwise step in the

problem domain. At this point, the entire pressure field

has been updated once and the calculation sequence could

move to the upstream boundary and a new sweep started, using

the improved pressure field. Especially as the solution nears

convergence, it has been found helpful to make additional

Gauss-Seidel passes through the pressure field (relaxing the

Poisson equation) prior to starting the new sweep involving

Steps 2-4.

The above procedure differs from the Pracap-Spalding [39] method

primarily in the details of Steps 3 and 4 and in the use of iterations

I'
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through the pressure field between the computational sweeps to determine

velocities.

4.2. Summary of Results

In the comparisons made to date, the solutions to the partially

parabolized Navier-Stokes equations have agreed remarkably well with

solutions to the full Navier-Stokes equations reported by others.

Solutions for developing laminar flow in a channel at low Reynolds

numbers are compared with solutions to the full Navier-Stokes equations

in [38]. In that study, the predictions from the partially parabolized

procedure were observed to be within 5% of the solutions to the full

Navier-Stokes equations for Reynolds numbers as low as 10.

More recently, the partially parabolized procedures have been

applied to one of the nearly separating external laminar flows studied

by Murphy [42] and Briley [43]. The specific case computed can be

identified as Run 12 of [42]. This corresponds to Briley Case No. 4

[43], with the distance from the plate to the upper boundary doubled.

The flow starts as the classical linearly retarded flow studied by

Howarth [44], whereby the outer edge velocity varies according to
-l

u = b0 - b1x, where b0 and b1 were taken as 30.48 m/s and 300 s ,

respectively. The kinematic viscosity was v = 1.49 x 1.0- 4 m 2/s.

At x* = 0.2 (with allowance for fairing, as used in (421 and [431),
V

the outer edge velocity becomes constant at 0.79875 b0 (see Fig. 13).

* The outer edge was located at y = 7.62 x 10- 3 m (0.025 ft) as in the

Murphy Run 12 [42]. The upstream and downstream boundaries were

established at x* - 0.05 and x* - 0.49, essentially as in [42] and

I
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Fig. 13. Comparison of predicted dimensionless skin-friction
coefficient, Murphy Run 12 [42].
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[43]. The u and v initial (x* 0.05) velocity distributions were

specified to be in agreement with Howarth's boundary layer solutions.

Both u and v were specified at the upper boundary, u as indicated

above and v according to the values obtained by Murphy [45]. Noe

boundary conditions can be imposed at the downstream boundary for the

partially parabolized equations.

Murphy [44] utilized a 20 x 18 grid, whereas a 38 x 35 grid was

used in the calculations by the present method. The calculations are

presently being repeated for a coarser grid to study the effect of

mesh size on the solution. Reversed flow was present in the solution

during the first few sweeps, but this was readily accommodated in the

present marching scheme through the use of the FLARE approximation.

Thirty-six streamwise sweeps were required for convergence to the

point where the sum of the absolute values of the mass sources in the

entire flow field was less than 0.1% of the mass flow rate at the

upstream boundary. The calculations required 4.9 minutes on the ITEL

AS/6 computer. Additional details on the computational method, which

differs considerably from that used by Briley [431 and Murphy [42],

can be found in [37] and [38].

The predicted values of skin-friction coefficient are compared

with the full Navier-Stokes results obtained by Murphy [45] in Fig. 13.

For reference, the skin-friction coefficient from the Howarth [44]

solution to the boundary layer equations is also shown in the figure.

Conventional boundary layer analysis applied in the direct mode is

seen to predict separation at about x* = 0.12. The skin-friction

coefficient predicted by the present partially parabolized scheme is
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seen to agree fairly well with the Murphy results. The qualitative

trends are clearly well predicted by the partially parabolized equa-

tions.

Velocity profiles predicted by Murphy and by the present procedure

are compared in Fig. 14. The agreement between the two predictions is

generally quite good. Both methods predict a slight velocity overshoot

near the vicinity of the minimum skin-friction coefficient.

The nondimensional pressure distribution predicted for this flow

is shown in Figs. 15 and 16. The reference pressure and velocity in

the nondimensional pressure plotted in Fig. 15 correspond to the outer

edge values at the downstream boundary where the flow returns to near

boundary layer-like conditions. Figure 15 indicates the pressure

variation along the flow for four y levels, one very near the surface,

one at the outer edge, and two in between. The variation of pressure

across the flow is seen to be substantial in the neighborhood of the

abrupt change in the outer edge velocity distribution. Pressure pro-

files across the flow are shown for three x locations in Fig. 16. The

results indicate that in the neighborhood of the minimum value of skin

friction, the pressure variation across the flow is substantial and

not restricted to the outer portion of the flow. Near the downstream

boundary, the pressure variation across the viscous portion of the

flow is seen to be very small.

The ratio of the transverse to streamwise pressure gradient is

L. plotted across the flow for an x location close to the minimum in

skin-friction (x* = 0.2253) in Fig. 17. The normal pressure gradient

21
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appears to be generally of the same order of magnitude as the streamwise

gradient at that location. Although not included in the figure, up-

stream at x* - 0.1502, the maximum ratio of normal to streamwise pressure

gradient was observed to be 0.22, whereas, near the downstream boundary

at x* - 0.4507, the maximum ratio was 0.024.

A.

V

.

if



5. CONCLUSIONS

The following are considered the most important conclusions to be

drawn from the study which has been summarized in the present report.

1. Quite reasonable predictions of thin separated regions appear

possible through an inverse finite-difference boundary layer

calculation procedure in which the displacement thickness is

specified as a boundary condition rather than the pressure

gradient. The solution can be obtained in a once-through

computational sweep in the primary flow direction through the

use of the FLARE approximation for the streamwise convective

derivation.

2. For turbulent flows undergoing separation, standard algebraic

turbulence models were found to perform poorly in predicting

flow parameters near separation and beyond.

3. Much improved predictions for turbulent separated flow were

obtained using a new simplified transport equation for the

length scale in the expression for turbulent viscosity in the

A outer portion of the flow.

4. Including turbulence kinetic energy in the turbulence model

for separated flow following the Prandtl-Kolmogorov formulation

had little effect on the predictions. Length scale, rather

than turbulence velocity scale, seems to be the parameter whichf

deviates most significantly from equilibrium values in incom-

pressible separating flows, at least as determined by the

turbulence models considered in the present study.
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5. A promising viscous-interaction procedure has been developed

for the calculation of external viscous flows containing

separation bubbles. The procedure utilizes an inverse

finite-difference boundary layer calculation method and a

Cauchy integral formulation for the inviscid flow using a

small disturbance approximation. This scheme permits com-

putation of the viscous flow in the neighborhood of the

separation bubble, starting with the solution for the inviscid

flow over the solid body alone as the only input. The new

viscous-inviscid matching procedure appears to be well con-

ditioned numerically and overcomes several of the shortcomings

associated with earlier matching procedures.

6. Results computed for transitional separation bubbles on

airfoils generally agreed well with experimental measurements.

The predictions appear quite sensitive to the model used for

laminar-turbulent transition. Transition Model B, based on a

newly developed correlation for the onset of bubble transition,

performed best of the three transition models evaluated.

7. A solution procedure has been developed for the partially

parabolized Navier-Stokes equations for incompressible flows

which permits the prediction of flows in which transverse

pressure gradients may be important, but for which streamwise

diffusion of momentum is negligible. The numerical scheme

developed appears to work well, convergence always being

observed to date for Reynolds numbers ranging from 0.5 to

IN

I .
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10,000. The rapid convergence is thought to be due to the

formulation used for the pressure, especially the use of a

Poisson equation which accounts for all terms in the momentum

equations.

8. Solutions to the partially parabolized equations for developing

flow in a channel at Reynolds numbers as low as 10 and for a

nearly separating laminar external flow over a plate at

ReL = 10,000 were seen to agree remarkably well with solutions

to the full Navier-Stokes equations. From this it can be

concluded that streamwise diffusion of momentum is often a

negligible process even at low Reynolds numbers and that most

of the discrepancy between the boundary layer and Navier-Stokes

solutions can be eliminated by accounting for nonzero transverse

pressure gradients.

9. In the nearly separating laminar external flow case, the

numerical solutions to the partially parabolized Navier-Stokes

equations indicate a substantial pressure variation in the

normal direction near the location of the minimum in skin

friction. The variation was not confined to the outer portions

of the flow. It is not known whether this variation is highly

dependent on the Reynolds number and outer boundary conditions

of the flow or whether it is a generally occurring phenomena

for flows approaching separation. It would be interesting to

test the boundary ltyer small-disturbance inviscid interaction

flow model for a flow such as this, in which the solution to
A

'T
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the more complete flow model indicated such a large variation

in pressure in the normal direction.

I

- I
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